

NSF Engineering Research Center

UtahState

University

STATE

Electrification Plan for State of Utah Airport Infrastructure June 2, 2022

Project Team

- Utah State University
 - Regan Zane, ASPIRE Center Director
 - Kamie Champlin, Undergraduate Researcher
 - Jackson Morgan, Graduate Researcher
 - Ziqi Song, ASPIRE Supporting Faculty Member
 - Hossein Nasr Esfahani, Graduate Researcher
- Electric Power Systems
 - Steven Hall, Director of Product Management
 - Carsten Christensen, Systems Engineer II, Technical Lead
 - Thomas Payne, Systems Engineer Intern
 - David Koch, Senior Director of Product Infrastructure
 - David Christensen, Director of Government Relations
 - Dallin Dahl, Program Manager I

Problem Statement

- Electric aviation is here, and the sector's growth can be optimized.
- Charging infrastructure and grid integration is growth critical.
- Strategic preparation is key to realizing risk mitigation, intelligent growth trajectory, leadership, and economic benefits.

Objectives

- Design the Utah Statewide Electrification Plan (U-SWEAP) framework
 - A framework to plan for electrifying airports and electric aviation corridors throughout the State of Utah that will support aviation uses such as pilot training operations, thin haul/commercial routes, and future advanced air mobility (AAM) operations.
- Anticipate future energy demands on Utah's airports as electric aircraft technologies proliferate.
- Evaluate business models and implications for state-owned charging infrastructure compared with industry-owned infrastructure assets or a hybrid model.

Project Research Tasks

Research Task 1: Development of an electrification forecast for flight school operations in Utah

Research Task 2: Development of an electrification forecast for thin haul/commercial operations in Utah

Research Task 3: Development of an electrification forecast for AAM operations in Utah

- Synthesis 1-3: Synthesis of the three forecasts from Tasks 1-3 into a statewide aviation electrification forecast
- Research Task 4: Electrified aviation energy and power requirements—derivation of new power and energy requirements at the Utah airports that are projected to support electrified aviation operations
- Research Task 5: Proposed approach for deploying electric aviation support infrastructure exploration of the costs associated with different approach for deploying and operating electrified aviation supporting infrastructure
- **Research Task 6: U-SWEAP Framework**—an exploration of 1) the relationships between electrified aviation technology and the ecosystem in which it operates and 2) models that may be used to define and analyze those relationships and that ecosystem

Research

Stage

Stage 1:

Data

Gathering

Stage 2:

Analysis

Stage 3:

Framework

Project Timeline

Deliverables Summary

The project will deliver the **U-SWEAP framework** and **accompanying report**. The report will contain the following:

- Phase-specific data
 - Exploratory flight forecasts for pilot training, thin haul/commercial, and AAM operations
 - Preliminary airport power and energy requirements for charging infrastructure
- Preliminary Analyses
 - Infrastructure option operations and costs at airport analysis
 - Flight corridor impact assessment
- U-SWEAP Framework
 - Framework map addressing SOW sub-deliverables
 - Summary of framework outcomes

Deliverables Schedule

Task Name 👻	Duration 👻	Start 🚽	Finish 🚽
Milestones	141 days	Mon 11/15/21	Tue 5/31/22
Kickoff	0 days	Mon 11/15/21	Mon 11/15/21
Advisory board Review #1	0 days	Tue 3/1/22	Tue 3/1/22
Advisory Board Review #2	0 days	Mon 4/18/22	Mon 4/18/22
Advisory board Review #3 (Final)	0 days	Thu 6/2/22	Thu 6/2/22

CDRL #	Description	Artifact	Delivery Date	Responsible Party
1	Interim Report #1	Presentation	3/07/2022	ASPIRE/EPS
2	Interim Report #2	Presentation	4/18/2022	ASPIRE/EPS
3	Final Report	Presentation & Report	6/2/2022	ASPIRE/EPS

Project Methodology and Findings

ittps://evtol.com/news/embraer-eve-beacon-evtol-maintenance-partnershi

Methods Overview

Statewide Electrified Aviation Forecast

- Fleet electrification and operations across three segments
 - University-sponsored flight school operations at USU, UVU, SUU
 - Thin haul/commercial (TH/C) operations—smallscale cargo and passenger operations between local airports
 - Advanced air mobility (AAM) operations—electric air taxi operations between points of interest
- Electric aircraft specs based a variety of aircraft, including but not limited to
 - Diamond eDA40 (flight schools)
 - Tecnam P2012 Traveler P-Volt (TH/C)
 - Hybridized Cessna Caravan (TH/C)
 - Hybridized Beechcraft King Air (TH/C)
 - Aggregated EVTOL aircraft data from Joby, Archer, Vertical Aerospace, Embraer Eve, Lilium, and Airbus (AAM)

Statewide Electrified Aviation Forecast Visualization

Air Traffic Impact Assessment

New AAM routes along Wasatch Front

New thin haul/commercial routes centered on SLC airport

Electrical Grid Power Requirements Assessment

25,000

- **Urban airports** should be able to support initial electrification with little grid augmentation
- **Rural airports** may face a much more significant challenge

	Peak Demand	Est. Total Grid	Est. Available	Capacity	Airport Fraction
Location	2030 (kW)	Capacity	Capacity (kW)	Surplus (2030)	of Capacity
Parowan	376.18	171.27	137.01	-239.16	275%
Cedar City	1232.16	5300.08	4240.06	3007.90	29%
Ogden	1096.58	5103.87	4083.10	2986.51	27%
Price	134.07	24.94	19.95	-114.12	672%
Salt Lake Int'l	6590.58	29218.17	23374.54	16783.95	28%
West Jordan					
(South Valley)	2916.53	5946.06	4756.85	1840.32	61%
Vernal	557.03	1654.45	1323.56	766.54	42%

20,000 15,000 10,000 FARPARK 30 N C Red Igu GROVE GROVE GROVE GROVE Cedar City Ogden Salt Lake Int'l West Jordan (South Valley) Peak Demand 2030 (kW) Est. Available Capacity (kW)

Urban Airports

Power demand and capacity around SLC

Airport Electrification Deployment Analysis: SLC Study

Three scenarios analyzed

- Permanent infrastructure only, grid upgrade to accommodate full demand
- Some permanent infrastructure augmented by a mobile charging platform that can charge during off-peak hours and discharged during peak hours
- Some permanent infrastructure augmented by a mobile charging platform and a 1 MW solar panel array

Infrastructure cost breakdown with only fixed, permanent infrastructure

	Price	Cost
Customer Charge	\$53.00	\$53.00
Facilities	\$3.99	\$26,298.09
Power	\$13.27	\$87,462.57
Total Peak	\$17.26	\$113,760.66
Energy	\$0.03888	\$10,032.86
Grand	d Total	\$123,846.52
Avg (\$	/kWh)	\$ 0.4799

Infrastructure cost breakdown with microgrid option

	Price	Cost	
Customer Charge	\$53.00	\$53.00	
Facilities	\$3.99	\$22,308.09	
Power	\$13.27	\$74,192.57	
Total Peak	\$17.26	\$96,500.66	
Energy	\$0.03888	\$10,032.86	
Microgrid	Amortized	\$8,333.33	
Grand Total		\$114,919.85	
Avg (\$/kWh) \$0.4453		\$ 0.4453	
Infrastructure ^s costepréakdown with microgrid ard solar options			
	Price	Cost	
Customer Charge	Price \$53.00	Cost \$53.00	
Customer Charge Facilities	Price \$53.00 \$3.99	Cost \$53.00 \$22,308.09	
Customer Charge Facilities Power	Price \$53.00 \$3.99 \$13.27	Cost \$53.00 \$22,308.09 \$74,192.57	
Customer Charge Facilities Power Total Peak	Price \$53.00 \$3.99 \$13.27 \$17.26	Cost \$53.00 \$22,308.09 \$74,192.57 \$96,500.66	
Customer Charge Facilities Power Total Peak Energy	Price \$53.00 \$3.99 \$13.27 \$17.26 \$0.03888	Cost \$53.00 \$22,308.09 \$74,192.57 \$96,500.66 \$1,635.21	
Customer Charge Facilities Power Total Peak Energy Microgrid	Price \$53.00 \$3.99 \$13.27 \$17.26 \$0.03888 Amortized	Cost \$53.00 \$22,308.09 \$74,192.57 \$96,500.66 \$1,635.21 \$8,333.33	
Customer Charge Facilities Power Total Peak Energy Microgrid Grand	Price \$53.00 \$3.99 \$13.27 \$17.26 \$0.03888 Amortized	Cost \$53.00 \$22,308.09 \$74,192.57 \$96,500.66 \$1,635.21 \$8,333.33 \$106,522.20	
Customer Charge Facilities Power Total Peak Energy Microgrid Grand Avg (\$	Price \$53.00 \$3.99 \$13.27 \$17.26 \$0.03888 Amortized Total /kWh)	Cost \$53.00 \$22,308.09 \$74,192.57 \$96,500.66 \$1,635.21 \$8,333.33 \$106,522.20 \$0.4128	

U-SWEAP Framework Structure

What information can we gather and analyze to tell us about the future of electrified aviation?

What are the immediate impacts and requirements on the existing ecosystem?

What are the non-obvious or long-term on the developing ecosystem?

U-SWEAP Framework

Framework Outputs

Opportunities for Techno-Socio-Economic Synergy

- Commercial and business development around new AAM hubs
- Grid infrastructure upgrades can be coordinated to support electrified aviation and electrified surface transportation
- Aviation adds a third dimension of flexibility to public transportation and mobility strategies
- Relocation of traffic density and emissions away from high-population-density areas
- Vitalize rural/at-risk communities with new mobility options

Business Case Considerations

Framework Development Process				
 Cost and Investment Electric aircraft/fleet acquisition Electric aircraft/fleet operation and maintenance Charging equipment installation Charging equipment Operation and Maintenance Grid infrastructure upgrade 	Ownership Models • Private aircraft ownership • Commercial aircraft ownership • Commercial fleet ownership • University/Flight school fleet ownership • Privately owned infrastructure • Commercially owned infrastructure • Publicly owned infrastructure	 Anticipated Returns Electric aircraft/fleets operation and maintenance Utility expansion/charging revenues Jobs creation in aviation and utility sectors Flight school enrollment expansion Social mobility and opportunity accessibility Environmental health opportunities Industry leadership gravity-well opportunities R&D/technology innovation 		

Proposed Implementation Plans

ttps://evtol.com/news/embraer-eve-beacon-evtol-maintenance-partnershi

Recommendations for Implementation and Future Work

Среденствие ромен systems

NSF Engineering Research Center

Q&A / Discussion